



# Development of Improved Composite Pressure Vessels for Hydrogen Storage

Norman L. Newhouse, Ph.D., P.E.

Jon Knudsen, Project Engineer

Lincoln Composites

9 June 2010

Project ID# ST047

This presentation does not contain any proprietary, confidential, or otherwise restricted information

### Overview

### **Timeline**

- Phase 1 start 1 Feb 2009
- Phase 1 end 30 Apr 2011
- 30% complete

### **Budget**

- Project funding \$2,000,000
- Phase 1 funding \$761,466
  - DOE share \$609,156
  - Contractor share \$152,290
- FY08 = \$ 0
- FY09 = \$305,000
- FY10 = \$250,000 (plan)

### **Barriers**

- Barriers addressed
  - A. System Weight and Volume
  - B. System Cost
  - G. Materials of Construction
- Targets (2010)
  - Gravimetric capacity > 4.5%
  - Volumetric capacity > 0.045 kg H<sub>2</sub>/L
  - Storage system cost TBD

### **Partners**

- HSECOE HSECOE

  SPAN DANN LAND IDE
  - SRNL, PNNL, LANL, JPL, NREL, UTRC, GM, Ford, LC, Oregon State Univ, UQTR
- Project lead = Don Anton,
   SRNL SRNL



















### Objectives - Relevance

 Meet DOE 2010 and 2015 Hydrogen Storage Goals for the storage system by identifying appropriate materials and design approaches for the composite container

|                      | <u>2010</u>                  | <u>2015</u>                       |
|----------------------|------------------------------|-----------------------------------|
| Gravimetric capacity | > 4.5%                       | > 6%                              |
| Volumetric capacity  | > 0.045 kg H <sub>2</sub> /L | $> 0.081 \text{ kg H}_2/\text{L}$ |
| Storage system cost  | TBD                          | TBD                               |

- Maintain durability, operability, and safety characteristics that already meet DOE guidelines for 2010 and 2015
- Work with HSECoE Partners to identify pressure vessel characteristics and opportunities for performance improvement
- Develop high pressure tanks as are required to:
  - Enable hybrid tank approaches to meet weight and volume goals
  - Allow metal hydrides with slow charging kinetics to meet charging goals



### Phase 1 Approach

- Establish and document baseline design, materials, and manufacturing process
- Evaluate potential improvements for design, material, and process to achieve cylinder performance improvements for weight, volume, and cost
- Down select most promising engineering concepts
- Evaluate design concepts and ability to meet Go/No-Go requirements for moving forward
- Document progress in periodic reports and support HSECoE Partner meetings and teleconferences





### Phase 1 Milestones

- Establish/document baseline design and identify options for improvement Complete
- Report on Phase 1 evaluation of design, material, and process improvements
- Identify most promising engineering concepts
- Report on Phase 1 selection of most promising design, material, and process improvements
- Document revised baseline design summary
- Evaluate likelihood of composite container meeting system and DOE objectives





# Progress – Baseline Design/Materials

### Design

- Fiber reinforced composite structure
- Plastic liner/permeation barrier
- Metallic end bosses
- 350 bar pressure capability

### Materials

- Carbon fiber
- Epoxy resin
- HDPE liner
- AA 6061-T6 bosses







# Progress – Baseline Design/Materials

Table 1: Service conditions and nominal cylinder properties

| rable 1. Service conditions and nominal cylinder properties |                                  |  |
|-------------------------------------------------------------|----------------------------------|--|
| Service Pressure                                            | 5,000 psi (344.7 bar)            |  |
| Gas Settling Temperature                                    | 59 °F (15 °C)                    |  |
| Maximum Fill Pressure                                       | 6,500 psi (448 bar)              |  |
| Service Life                                                | 20 years                         |  |
| Gas Fill Temperature Limits                                 | -40 to 149 °F (-40 to 65 °C)     |  |
| Operating Temperature Limits                                | -40 to 180 °F (-40 to 82 °C)     |  |
| Proof Test Pressure                                         | 7500 psi (517 bar)               |  |
| Minimum Rupture Pressure                                    | 11,700 psi (807 bar)             |  |
| Cylinder Diameter                                           | 21.4 inches (543.4 mm)           |  |
| Cylinder Length (unpressurized)                             | 63.0 inches (1600 mm)            |  |
| Cylinder Length at Maximum Fill Pressure                    | 63.34 inches (1609 mm)           |  |
| Cylinder Empty Weight (excluding hardware)                  | 231 lbs (105 kg)                 |  |
| Cylinder Volume                                             | 15,865 in <sup>2</sup> (260 L)   |  |
| Cylinder Volume at Service Pressure                         | 16,132 in <sup>2</sup> (264.4 L) |  |
| Cylinder interior diameter                                  | 19.2 inches (488 mm)             |  |
|                                                             |                                  |  |

Note: Future improvements will be evaluated against this baseline





### Progress - Alternative Fibers

- Investigate alternative carbon fibers
  - Relative to fiber strength
  - Relative to impact tolerance
- Baseline Fiber Toray T700
- Five alternate fibers tested
- Vessels wound using same parameters for each
  - Mandrel
  - Wind patterns
  - Tooling
  - Process
- Tow count adjusted, per fiber, to maintain consistent band cross sectional area





# Progress - Alternative Fibers, Strength

- One vessel constructed of each fiber hydrostatically burst
- Stress in fiber at failure calculated based on fiber certifications and normalized to Toray T700
- Drop/cycle/burst testing is in progress
- Strength versus cost will need to be evaluated following completion of testing

| Alternate<br>Fiber | Normalized<br>Strength |
|--------------------|------------------------|
| Toray T700         | 1.00                   |
| Fiber A            | 1.19                   |
| Fiber B            | 0.90                   |
| Fiber C            | 0.98                   |
| Fiber D            | 0.77                   |
| Fiber E            | 0.90                   |





# Future Work - Alternative Fibers, Impact Tolerance

- Future Actions (Phase 1)
  - One unit of each fiber to be drop and cycled per NGV 2-2007
  - 5 of 6 units have been drop tested and are beginning the cycling portion of the testing
  - All 6 units will be cycled and then burst
  - Report will be written at the conclusion of testing and data gathering





# Progress - Alternative Boss Material

- Investigate methods to create bosses with 7075-T73 Aluminum
  - Properties difficult to acquire through the entire thickness
  - High strength would allow reduction in boss size and allow Aluminum use at high pressures
- Accomplishments
  - Near net shaped bosses machined from 7075-T6 Aluminum
  - 4 bosses have been machined and surface finished to influence quench rate
    - Smooth machining
    - Rough machining
    - Sand blasted
    - Chemical etching
  - Bosses have been heat treated to a T73 condition
  - Harness versus strength evaluation is in progress





### Future Work - Alternative Boss Material

- Future Actions (Phase 1)
  - Bosses in process of being sectioned for review
  - Each boss cross section will be hardness mapped
  - Hardness mapping will be used to create cross sectional strength profile
  - Sections will be reviewed to evaluate effectiveness of relative surface finishes in achieving T73 condition





# Progress - Resin Toughening

### Accomplishments

- Identified and gathered candidate material specifications for resin toughening
- Received samples of candidate materials for testing
- Acquisition of equipment/materials for making test specimens
- Developed procedure for preparing test specimens
- Preliminary screening (Viscosity, Tg) of alternate hardener
- Sent baseline formulation and alternate hardener specimens for testing (ASTM D5045)
- Awaiting tooling for completion of ASTM D638 testing on baseline formulation and alternate hardener





# Future Work - Resin Toughening

### Future Actions (Phase 1)

- Determine which hardener will be used for testing (Based on ASTM D5045 and ASTM D638)
- Preliminary screening (Viscosity, Tg) of candidate materials – select down
- Begin testing to determine mechanical and environmental/chemical properties – select down
- Coupon impact test select down
- Build full scale parts for qualification testing





# Progress – Alternate Liner Materials (Permeation)

- Coatings and surface treatments do not look viable to date
  - Coatings show blistering following hydrogen soak and blow down
  - Surface treatments have not been effective
- HDPE with nanoclay filler was not successful
  - Molecular properties of HDPE did not promote dispersion
  - Improvement seen with new vendor material
  - HDPE with titanium dioxide resulted in a 25% reduction in permeation
- HDPE/EVOH
  - Problems with layered materials including welding
  - Have looked at adding EVOH as an outside layer to avoid weld region, but have had adhesion problems
  - Looking at EVOH that has been modified to increase ductility





# Progress – Alternate Liner Materials (Permeation) - continued

- Nylon
  - Have seen lower permeation rates but will have a large increase in cost (4X to 10X) in reference to standard HDPE
  - EVA did not show an improvement
- Domes have been molded
  - HDPE
  - HDPE/standard nonclay
  - HDPE/development nanoclay
  - HDPE/titanium dioxide
- Domes have been molded together to begin winding vessels





### Progress – Alternate Liner Material Permeation versus Cost

- HDPE is baseline (1,1)
- Comparison of relative cost and permeation rates
- HDPE fillers show 40% reduction with limited cost increase
- Alternate materials show promise of significant permeation reduction
- Some alternate materials are prohibitively expensive







# Future Work – Alternate Liner Materials (Permeation)

- Future Actions (Phase 1)
  - Wind liners with the current designated additives as stated on previous slide
  - Permeation testing will follow on complete vessels
  - Working to get domes molded in nylon and EVOH if this looks promising in coupons
  - Plan to test with 100% hydrogen at Powertech Labs
  - Further testing to confirm mechanical and physical properties will need to be evaluated as well to capture data with respect to fatigue and cold fast fill



### Progress – Reduced Safety Factors

- Improved data base for stress rupture of carbon fiber may allow reduced safety factors
  - Maintain projected reliability
  - Reduce cost and weight, increase volumetric efficiency, with thinner walls
- Stress rupture project presented at industry workshop to gain feedback and support
  - Project is being refined
  - Some collaborators and funding has been identified
  - Additional collaboration and funding is being sought
  - Considering stress rupture, fatigue and damage tolerance
  - Evaluate damage vs. impact to characterize safety and ability to remain in service after damage
  - Evaluate NDE as a means of monitoring the structural integrity, allowing thinner laminates and removal from service before rupture





# Future Work – Overall Project

- Continue progress on evaluating potential improvements
- Down select most promising engineering concepts.
- Evaluate design against DOE 2010 and 2015 Hydrogen Storage Go / No Go Criteria
- Phase 2 continuation of container development in support of system requirements
- Phase 3 fabrication of subscale containers to support assembly of prototype systems for evaluation





### Collaborations

### Hydrogen Storage Engineering Center of Excellence

D. Anton, SRNL T. Motyka, SRNL

### **Materials Operating Requirements**

#### D. Herling, PNNL

- Materials Centers of Excellence Collaboration – SRNL, LANL, NREL
  - · Reactivity UTRC
- Adsorption Properties UQTR
- Metal Hydride Properties SRNL
- · Chemical Hydride Properties LANL

#### Transport Phenomena

- B. Hardy, SRNL
- · Bulk Materials Handling PNNL
  - Mass Transport SRNL
  - Thermal Transport SRNL
    - Media Structure GM

### **Enabling Technologies**

- J. Reiter, JPL
- Thermal Insulation JPL
- Hydrogen Purity UTRC
- Sensors LANL
- Materials Compatibility PNNL
  - Pressure Vessels PNNL

### Performance Analysis

#### M. Thornton

- Vehicle Requirements

   NREL
- Tank-to-Wheels Analysis NREL
- Forecourt Requirements UTRC
- Manufacturing & Cost Analysis PNNL

### Integrated Power Plant/ Storage System Modeling

- D. Mosher, UTRC
- Off-Board Rechargeable UTRC
- On-Board Rechargeable GM
  - Power Plant Ford

#### Subscale Prototype Construction, Testing & Evaluation

- T. Semelsberger, LANL
- Risk Assessment & Mitigation UTRC
  - System Design Concepts and Integration - LANL
  - Design Optimization & Subscale Systems – LANL, SRNL, UQTR
  - Fabricate Subscale Systems Components – SRNL, LANL
- Assemble & Evaluate subscale Systems

   LANL, JPL, UQTR



- Technology Team TT Lead
- Technology Team TT Lead
- Technology Team TT Lead



### Collaborations







### Collaborations







### Accomplishments

- Kick-off meeting in December 2008, Washington DC
- IP agreement signed January 2009
- Face to Face Meeting February 23-25, 2009, Golden, CO
- Face to Face Meeting September 28-October 1, 2009, Charleston, SC
- Face to Face Meeting March 2-4, 2010, Pasadena, CA
- Collaborating on technical paper with John Khalil (UTRC)(Lead), Kevin Simmons (PNNL) and Daniel Dedrick (SNL)





# Summary

- Lincoln Composites has initiated work under the DOE contract funding the HSECoE
- Design, material and process improvements have been identified that show potential to meet DOE 2010 and 2015 goals for the storage system
- Work is progressing on schedule with expectation of meeting go/no-go criteria to proceed to Phase 2
  - 4 of the DOE 2010 numerical system storage targets must be fully met
  - The status of the remaining numerical targets must be at least 40% of the target or higher



